
Popular science summary of master thesis work at Industrial Electrical Engineering and Automation,

LTH, Lund University.

AUTO-TESTING OF CODE

Thesis worker: Flamur Breznica

Testing in the automation production system is usually done manually and physically,
what if it was possible to do the test automatically with the help of a computer instead.
Are there enough tools to do this and can the process be more time-saving? This report
will aim to answer those questions.

The thesis primary subject was to investigate if

there are any possibilities to automate the tests

needed on automation production systems or at

least cover a part of the tests automatically. Is it

possible to do it and to what extent? All

automatic things need work for it to be

automatic, nothing is free and hard work will be

needed for making something automatic, no

matter what someone must put in the work. This

thesis was built up by one strategy and one

software design pattern which is commonly used

in the software world, the software design

pattern is called Model-View-Control and the

strategy is called the test automation pyramid.

Model-View-Control is usually used in software

and is divided into three parts. The view is what

the user sees, while the model decides what

happens behind the scene and lastly control says

what it wishes is going to happen, then the model

decides if it is possible or what will happen. [1]

The test pyramid is an old and rare strategy that

describes how the testing on software should be

performed. By dividing the testing into layers in

a shape of a pyramid, it will be easier to separate

the test in different layers and how much time

and focus should be spent on each layer where

further down of the pyramid equals more testing.

Let’s use a calculator as an example, the

numbers in the calculator correspond to units.

The numbers in a calculator are the foundation

of the device if the numbers in the calculator do

not work properly, the calculator is faulty.

Which means the biggest focus and more testing

should be done here. The next layer would be the

service test, in this case corresponds to adding,

subtracting or dividing. Lastly the top layer,

which is the user interface, how the calculator

should look like. [2] Figure 1 illustrates how the

pyramid is interpreted.

Since the software production differs from the

automation production system an interpretation

is needed to be done, or else it will not work, and

the testing will only be done on half of the

system since automation production systems

have both hardware and a software side that

communicate. By making tests automatic, it will

prevent some of the faults to come up since it

will start at the beginning. First thing is to

control the input if they are correct. By doing

this you control the source, a common saying is

that the result will never be better than the source

is since they depend on each other.

Testing machines are not an easy task, unlike

apps or software on phones and computer,

machine code is written on a computer which

needs to communicate with hardware, for

example a motor. Usually this is done by a

controller that handles the logic for it to make

sure it works as planned. However, since the

hardware is absent and the test is done

automatically with software, there is no

insurance that the test made sure everything

turns out as planned, thus automatic testing can

lead to new problems when compared to

software. The best way to deal with this is to try

it on real hardware, to make this work takes

practice. In apps or programs there are great

ways of making the testing automatic but on the

automation production system the evolution has

been that it is too expensive and just not worth

it. The need for testing and finding errors early

has always been there, even before creating a

product it would be the first thought. The thesis

aims to investigate these problems and

implement them on a virtual machine that was

also created in this thesis.

Figure 1: Illustrates how the interpretation of

the test pyramid looks like.

Popular science summary of master thesis work at Industrial Electrical Engineering and automation,

LTH, Lunds Universitet.

As the pyramid test shows, the unit testing has

great importance, see figure 1. To test the units,

a controller was needed. This was programmed

and to run the tests a controller was simulated.

The controller that in theory will control

the machine during the process. Due to

shipment troubles, this was done

manually in the beginning and later

automatically. The next step was to create a

view, which from the pyramid strategy was

interpreted as HMI and according to Mode-

View-Control strategy, the view is one of the

three parts that are important to

implement. This was done before simulation to

give a visualization of the virtual machine

and have an overview of the process. The last

step was to create the model which would

interpret as a simulation and with these

steps, a virtual machine was created.

To test the units, it is needed to use tools

since these tools are not implemented

in the environment the code is written in,

which is commonly integrated with the case

of software programming. By using a

program called “S7 Unit Test”, the tools will

be implemented and thus the pyramid will also

be implemented and automatic. The unit tests

are done automatic and it will also test the

code automatically after the code has been

written. This leads to an accurate and quick

response given through both in the program

and an automatic report. However, the first tests

were done manually due to the delivery

problem which later became automatic.

Automatic testing is coming to the automation

production systems and is most likely here to

stay. It probably will not save time, but it

will move time earlier in commissioning

and the quality of the product may be of

a higher standard. Unit testing as earlier

described is a program that does everything

by itself. It will have a learning curve, but it

will become better and more accurate with

time, as the developer gets used to it.

Implementing a test took about six hours while

running a test with the tool took 36 seconds.

This is about the same estimated time needed

when parts of the tests were done manually

in the beginning. However, if the manual

testing needs to be redone, the automatic testing

will most likely more time-efficient.

Master thesis work 2020: Auto-testing of code.

Supervisors: Mats Lilja, Christian Isaksson.

Currently the old traditional testing is done by

the physical machine which leads to a lot of

traveling between different machines on

updates. The companies would like to lower the

travel distance as much as possible while raising

the quality of testing. This does not mean that

automatic testing will replace the traditional

testing but some of them might be replaced and

yield better results.

The need is here, but the publisher should be

more interested in making automatic testing as a

part of their software instead of giving it as a

standalone program. This is probably one main

issue with why automatic testing is not used.

Working with automatic testing and simulation

will lower the risks of ruining actual machines

since this is done virtually and is cheaper. If a

problem is found earlier then it can be fixed

earlier which could prevent future implications.

The faults that are discovered might have been

discovered out on site and the costs would have

been higher as well. Automatic tests and

simulations are possibly reusable for machines.

The first machine that is created is going to cost

more but will have a learning curve since it can

be reused and improved which could save

expenses later. Timesaving will become more

and more, evaluating automatic testing is very

hard since it depends on case to case. But it is

most likely to move time in the beginning and

possibly save it in the future. Instead of

performing tests manually, the time must be put

on creating the testing cases. However, if they

are re-used then it could save time and

eventually raise the quality of the products

The simulation of the thesis could be improved

since it is done with old traditional software

while the testing is done with a new tool. The

new software SIMIT is a new way of handling

the problems with simulation, it gives both a

better overview and will test the finished

controller software without modifications.

According to Nikolova, the cost will rise as you

go higher on the pyramid. [3] To save time with

automatic testing is all about prioritizing and

choose wisely. To automate unit testing is

usually profitable and according to Nikolova, 90

percent of the unit testing should be

Popular science summary of master thesis work at Industrial Electrical Engineering and automation,

LTH, Lunds Universitet.

Master thesis work 2020: Auto-testing of code.

Supervisors: Mats Lilja, Christian Isaksson.

automatically. There is always a need for testing,

even though the tests are done automatic it does

not mean the tests will find and remove all faults.

Automated testing will remove some errors and

create others, it will have an expensive start cost

and be hard in the beginning. But the need for

testing will remain, no matter what is done. With

the tools that exist today, new doors are opened.

It is possible to pitch ideas and sell them to

customers if they need convincing, or raise the

bar for the product quality, or move the need of

having physical testing machines to needing

servers instead. The hunger for better machines

is always there, and the automated test is

possibly a step in that direction.

[1] G Krasner, S Pope, "A Description of the

Model-View-Controller User Interface

Paradigm in the Smalltalk-80 System" 1988.

Available:

https://www.researchgate.net/profile/Stephen_P

ope/publication/248825145_A_cookbook_for_

using_the_model_-

_view_controller_user_interface_paradigm_in_

Smalltalk_-

_80/links/5436c5f30cf2643ab9888926/A-

cookbook-for-using-the-model-view-controller-

user-interface-paradigm-in-Smalltalk-80.pdf

[Accessed: 2019-12-10]

[2] M Cohn, “The Forgotten Layer of the Test

Automation Pyramid” 2009. Available:

{https://www.mountaingoatsoftware.com/blog/t

he-forgotten-layer-of-the-test-automation-

pyramid [Accessed: 2019-12-16]

[3] Z Nikolova,Testing Strategies in an Agile

Context2020.Available :32

https://link.springer.com/content/pdf/10.1007%

2F978-3-030-29509-7_9.pdf[Accessed: 2019-

12-17]

https://www.researchgate.net/profile/Stephen_Pope/publication/248825145_A_cookbook_for_using_the_model_-_view_controller_user_interface_paradigm_in_Smalltalk_-_80/links/5436c5f30cf2643ab9888926/A-cookbook-for-using-the-model-view-controller-user-interface-paradigm-in-Smalltalk-80.pdf
https://www.researchgate.net/profile/Stephen_Pope/publication/248825145_A_cookbook_for_using_the_model_-_view_controller_user_interface_paradigm_in_Smalltalk_-_80/links/5436c5f30cf2643ab9888926/A-cookbook-for-using-the-model-view-controller-user-interface-paradigm-in-Smalltalk-80.pdf
https://www.researchgate.net/profile/Stephen_Pope/publication/248825145_A_cookbook_for_using_the_model_-_view_controller_user_interface_paradigm_in_Smalltalk_-_80/links/5436c5f30cf2643ab9888926/A-cookbook-for-using-the-model-view-controller-user-interface-paradigm-in-Smalltalk-80.pdf
https://www.researchgate.net/profile/Stephen_Pope/publication/248825145_A_cookbook_for_using_the_model_-_view_controller_user_interface_paradigm_in_Smalltalk_-_80/links/5436c5f30cf2643ab9888926/A-cookbook-for-using-the-model-view-controller-user-interface-paradigm-in-Smalltalk-80.pdf
https://www.researchgate.net/profile/Stephen_Pope/publication/248825145_A_cookbook_for_using_the_model_-_view_controller_user_interface_paradigm_in_Smalltalk_-_80/links/5436c5f30cf2643ab9888926/A-cookbook-for-using-the-model-view-controller-user-interface-paradigm-in-Smalltalk-80.pdf
https://www.researchgate.net/profile/Stephen_Pope/publication/248825145_A_cookbook_for_using_the_model_-_view_controller_user_interface_paradigm_in_Smalltalk_-_80/links/5436c5f30cf2643ab9888926/A-cookbook-for-using-the-model-view-controller-user-interface-paradigm-in-Smalltalk-80.pdf
https://www.researchgate.net/profile/Stephen_Pope/publication/248825145_A_cookbook_for_using_the_model_-_view_controller_user_interface_paradigm_in_Smalltalk_-_80/links/5436c5f30cf2643ab9888926/A-cookbook-for-using-the-model-view-controller-user-interface-paradigm-in-Smalltalk-80.pdf
https://www.researchgate.net/profile/Stephen_Pope/publication/248825145_A_cookbook_for_using_the_model_-_view_controller_user_interface_paradigm_in_Smalltalk_-_80/links/5436c5f30cf2643ab9888926/A-cookbook-for-using-the-model-view-controller-user-interface-paradigm-in-Smalltalk-80.pdf
file:///C:/Users/flamur.breznica/Downloads/%7bhttps:/www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
file:///C:/Users/flamur.breznica/Downloads/%7bhttps:/www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
file:///C:/Users/flamur.breznica/Downloads/%7bhttps:/www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid

